| | | | | H #4 | | | Well # | ê. | | | Weil #7 | | , | | | | | EPA Drinking | | |--|--|--------------------------------|-------------------------|--------------|--|----------|------------------|--|--|---------------|---|--------------|---------------|--|--|----------|-----------------|--------------|--| | | Well #1/#4 | Well #1 | Well | | | | PGDW07 | | PGPW01 | PGDW08 PGPW02 | | j | | Well #8 | | | Water Standards | | | | Data Source | this s | tudy | M-M (1984)1 | this study | this | study | SOC ³ | | EPA (200 | | - | this s | tudy | this | | soc, | | | | | Sample Date | 02/18/11 | | 03/22/82 | 05/29/12 | 02/18/11 | 05/29/12 | 1986 | 2009 | 2010 | 2009 | 2010 | 02/18/11 | | | 5/29/12 | 12/18/95 | Primary | Second | | | AJOR IONS (mg/L) | kalinity, Total as CaCO3 | | | | | | | 66 | 60.6 | 74.7 | 82.9 | 82.8 | | | 124 | | 124 | | | | | carbonate, HCO3 | | | | | | | 79 | | | | | | | 142 | | | | | | | arbonate, CO3 | - | | | | | | 3 | 0.05 | | | | | | <5 | | . | | Ь— | | | alcium | - | | | | | | 6 | 8.85 | 5.7 | 36.7 | 34.4 | | | - 11 | — | 11.1 | | 053 | | | hloride | - | | | | | | 16 | 15.7 | 15.3 | 8.9 | 8.5 | | | $oldsymbol{ol}oldsymbol{ol}oldsymbol{ol}oldsymbol{ol}ol}oldsymbol{ol}oldsymbol{ol}ol{oldsymbol{ol}oldsymbol{ol}ol{ol}}}}}}}}}}}}}}}$ | _ | 87 | └ | 250 | | | luoride
agnesium | - | | | | | | 1.54 | 1.2 | 1.2
ND | 0.5 | 0.5
ND | | | 4 | | <1.0 | 4 | 2 | | | itrogen, Nitrate+Nitrite as N | _ | | 0 | | | | <0.05 | | ND | | NU | | _ | | - | <0.1 | 10 | - | | | itrogen, Nitrate as N | | | , | _ | | | 10.00 | <0.5 | <0.3 | < 0.5 | <0.3 | - | | - | | 10.1 | 10 | - | | | itrogen, Nitrite as N | | | | | | | | <0.5 | <0.3 | <0.5 | <0.3 | | - | _ | | | 1 | - | | | otassium | _ | | | _ | | | <1 | 10.0 | ND | 10.5 | ND ND | | _ | | | <1.0 | \vdash | - | | | ilica | _ | | | - | | | | _ | , <u>. </u> | \vdash | | | | | $\overline{}$ | | - | — | | | odium | | 292 | 210 | 208 | 173 | 196 | 187 | 213 | 173 | 390 | 393 | | 388 | 253 | 97 | 255 | | - | | | ulfate | | 523 | 460 | 297 | 300 | 278 | 163 | 390 | 300 | 857 | 847 | | 787 | 449 | | 439 | | 250 | | | HYSICAL PROPERTIES | | | | • | • | • | • | | • | | | | | • | - | | - | | | | onductivity (umhos/cm) | 1040 | 1333 | | 897 | 880 | 893 | 861 | | | | | 20 | 1853 | 1230 | 12 | 1261 | | | | | ardness as CaCo3 (mg/L) | | | 69 | | | | | | | | | | | 27 | | | | | | | H (s.u.) | | | | | | | 8.6 | | | | | | | | | | | 6.5 - 8 | | | otal Dissolved Solids (mg/L) | | 961 | 644 | 601 | 495 | 570 | 576 | | 495 | | | | 1400 | 764 | 855 | | | 500 | | | ETALS - TOTAL (mg/L) | | | | | | | | | | | | | | | | _ | | | | | luminum | \Box | | | | | | | | ND | | 20 | | | | | | | | | | ntimony | \vdash | | | _ | | | _ | | ND
0.00034 | —` | Ψ, | \vdash | | 20.002 | | | J6 | _ | | | rsenic | \vdash | | L | | | | 0.10 | | 0.00031 | — | | | | <0.001 | | | 0.01 | | | | arium | \vdash | | | ⊢— | | | 0.10 | | 0.0041 | — | | | | — | | — | 0.004 | — | | | eryllium | \vdash | | | | | | | _ | ND | — | 1.4 | | | | | _ | 0.004 | - | | | oron
admium | \vdash | | | - | | - | <0.005 | - | ND | - | ND | | | | - | | 0.005 | \vdash | | | hromium | \vdash | | | | | 1 | <0.005 | | עוא | | ND
ND | | | | | _ | 0.005 | _ | | | obalt | | | | _ | | | 10.02 | | | \vdash | ND ND | | | | | _ | - V. I | | | | opper | | | | _ | | | | 0.0045 | | 1079 | ND | | $\overline{}$ | | _ | | 1.3 | 1 | | | yanide | | | | . | | | † | | | | | | | - | | - | 0.2 | _ | | | on | | | | | | | < 0.05 | | 0. | | 0.255 | | | 0.13 | | 0.44 | | 0.3 | | | ead | | | | | | | < 0.02 | | NA | | | | | | $\overline{}$ | | 0.015 | | | | anganese | | | | | | | < 0.02 | 0.0056 | 0.007 | 0.0104 | | | _ | < 0.01 | | | | 0.05 | | | ercury | | | | | | | < 0.001 | | ND | | Ty- | | | | | | 0.002 | | | | ickel | | | | | | | | | 0.00022 | | Ρ' | | | | | | | | | | elenium | | | | | | | | | ND \ | | | | | <0.001 | | | 0.05 | | | | ilver | | | | | | | | | ND | | | | | | , | | | 0.1 | | | hallium | | | | | | | | | ND | | ND | |) | | | | 0.002 | | | | ranium, Natural | | <0.0003 | | <0.0003 | | <0.00 | | | | | | | <0.0003 | | <0.0003 | | 0.03 | | | | anadium | | | | | | -4 | | | ND
ND | | ND | | | | | | | - | | | RGANIC CHARACTERISTICS | | | | | <u> </u> | 4 | 1 | _ | NO | —— | ND | <u> </u> | | | | | - | 3 | | | thane, Dissolved | | <0.001 | | <0.001 | | | | _ | | - | | | | | <0.001 | | - | _ | | | thene, Dissolved | | <0.001 | | <0.001 | | | | | | _ | | | | | <0.001 | | - | | | | ethane, Dissolved | | 0.010 | | 0.004 | | | † | | ND | \vdash | VD | | | 0.002 | 0.006 | | | | | | ethane, Head Space (ppb) | | | | | | | j | 7 | | | 3 | | | | | | | _ | | | liesel Range Organics (DRO) | | <1.0 | | <1.0 | | - 3 | | | _ | | .0231 | | | | <1.D | | | | | | iasoline Range Organics (GRO) | | <0.020 | | < 0.020 | | <0.046 | | | | | | | <0.020 | | <0.020 | | | | | | EMI-VOLATILES (mg/L) | • | | • | | | | | | | | | | | | • | _ | | | | | is(2-ethylhexyl)phthalate | | | | 7 | | | | | | _ | | | | | | | | | | | utylbenzylphthalate | | | | | | | | | Detect | | Detect | | | | | | | | | | | | | | | | | | | 0.00023 | | 0.00023 | | | | | | | | | | aprolactam | aprolactam
imethylphthalate | | | | | | | | ¥ | 0.00023
0.00029 | 0.0022 | 0.00023
0.0038 | | | | | | | | | | aprolactam
imethylphthalate
uorene | | | | | | | | F | 0.00023
0.00029
ND | 0.0022 | 0.00023
0.0038
ND | | | | | | | | | | aprolactam
imethylphthalate
uorene
aphthalene | | | | | | | | | 0.00023
0.00029
ND
ND | 0.0022 | 0.00023
0.0038
ND
ND | | | | | | | | | | aprolactam
imethylphthalate
uorene
aphthalene
imma-BHC (Lindane) | | | | | | | | | 0.00023
0.00029
ND
ND | 0.0022 | 0.00023
0.0038
ND
ND
ND | | | | | | | | | | aprolactam
imethylphthalate
uorene
aphthalene
amma-BHC (Lindane)
eptachlor | | | | | | | | | 0.00023
0.00029
ND
ND
ND
ND | 0.0022 | 0.00023
0.0038
ND
ND
ND
ND | | | | | | | | | | aprolactam
Imethylphthalate
luorene
aphthalene
amma-BHC (Lindane)
eptachlor
ethoxychlor | | | | | | | | | 0.00023
0.00029
ND
ND
ND
ND
ND | 0.0022 | 0.00023
0.0038
ND
ND
ND
ND
ND | | | | | | | | | | aprolactam
imethylphthalate
uorene
aphthalene
imma-BHC (Lindane)
eptachlor
ethoxychlor
enzene | | | | | | | | | 0.00023
0.00029
ND
ND
ND
ND
ND | 0.0022 | 0.00023
0.0038
ND
ND
ND
ND
ND | | | | | | | | | | aprolactam imethylphthalate uorene aphthalene amma-BHC (Lindane) eptachlor ethoxychlor enzene thylbenzene | | | | | | | | | 0.00023
0.00029
ND
ND
ND
ND
ND
ND
ND | 0.0022 | 0.00023
0.0038
ND
ND
ND
ND
ND
ND
ND | | | | | | | | | | aprolactam imethylphthalate uorene aphthalaene imma-BHC (Lindane) eptachlor ethoxychlor enzene phylbenzene phylbenzene | | | | | | | | | 0.00023
0.00029
ND
ND
ND
ND
ND
ND
ND
ND
ND | 0.0022 | 0.00023
0.0038
ND
ND
ND
ND
ND
ND
ND
ND | | | | | | | | | | aprolactam methylphthalate uorene aphthalane imma-BHC (Lindane) eptachlor ethoxychlor enzene hylbenzene p-Xylene ethylphorene ethylphorene | | | | | | | | | 0.00023
0.00029
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | 0.0022 | 0.00023
0.0038
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | | | | | | | | | | aprolactam methylphthalate uorene aphthalate ne imma-BHC (Lindane) aptachlor ethoxychlor anzene p-Xylene ethylene chloride Xylene | | | | | | | | | 0.00023
0.00029
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | 0.0022 | 0.00023
0.0038
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | | | | | | | | | | aprolactam methylphthalate uorene aphthalane mma-BHC (Lindane) eptachlor ethoxychlor enzene nyibenzene p-Xylene ethylene chloride Xylene | | | | | | | | | 0.00023
0.00029
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | 0.0022 | 0.00023
0.0038
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | | | | | | | | | | aprolactam methylphthalate uorene aphthalane (Lindane) eptachlor ethoxychlor enzene p-Xylene ethylene chloride Xylene yrene | | | | | | | | | 0.00023
0.00029
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | 0.0022 | 0.00023
0.0038
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | | | | | | | | | | aprolactam methylphthalate uorene aphthalene imma-BRC (Lindane) eptachlor ethoxychlor enzene nyibe nizene py-Xylene ethylene chloride Xylene yrene luene | | | | | | | | | 0.00023
0.00029
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | 0.0022 | 0.00023
0.0038
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | | | | | | | | | | aprolactam methylphthalate uorene aphthalane mma-BHC (Lindane) eptachlor ethoxychlor excene hylbenzene p-Xylene ethylene chloride Xylene yeree bluene ACTERIOLOGICAL acteria, Heterotrophic (MPN/ml) | | | | | | | | | 0.00023
0.00029
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | 0.0022 | 0.00023
0.0038
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | | | | | | | | | | aprolactam methylphthalate uorene aphthalane mma-BHC (Lindane) eplachlor ethoxychlor eth | | | | | | | | | 0.00023
0.00029
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | 0.0022 | 0,00023 0,0038 ND | | | | | | | | | | aprolactam methylphthalate uorene aphthalane imma-BRC (Lindane) eptachlor ethoxychlor enzene p-Xylene ethylene chloride Xylene yrene lylene chloride Xylene greene lylene chloride ACTERIOLOGICAL teleria, Helserbephic (MPN/ml) toleria, Iron Related citeria, Approx. Iron Related citeria, Approx. Iron Related citeria (Approx. Iron Related | | | | | | | | | 0.00023 0.00029 ND | 0.0022 | 0,00023 0,0038 ND | | | | | | | | | | aprolactam imethyliphthalate uorene aphthalane imma-BHC (Lindane) eptachlor ethoxychlor enzene ethoxychlor enzene ethylibenzene p-Xylene ethyliene chloride Xylene sluene sluene acteria, Heterotrophic (MPN/ml) acteria, Iron Related acteria, Approx. Iron Related acteria, Approx. Iron Related acteria, Population (CFU/ml) acteria, sichera, Suffate Reducing | | | | | | | | | 0.00023
0.00029
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | 0.0022 | 0,00023 0,0038 ND | | | | | | | | | | aprolactam imethylphthalate luorene aphthalate luorene aphthalate eptachlor ethoxychlor enzene thoxychlor enzene p-Xylene ethylene chloride Xylene douene ACTERIOLOGICAL acteria, Hesterbrophic (MPN/ml) acteria, Approx. Iron Related acteria Postalation (CPU/ml) acteria, Sulfate Reducing acteria, Sulfate Reducing acteria, Sulfate Reducing | | | | | | | | | 0.00023 0.00029 ND | 0.0022 | 0,00023 0,0038 ND | | | | | | | | | | aprolactam methylphthalate uorene aphthalaene mma-BHC (Lindane) eptachlor ethoxychlor enzene hylbenzene p-Xylene ethylene chloride Xylene strylene chloride Xylene strylene chloride ACTERIOLOGICAL acteria, Heterotrophic (MPN/ml) acteria, Fon Related acteria, Approx. Fon Related acteria, Approx. Fon Related acteria, Approx. Sulfate Reducing acteria, Approx. Sulfate Reducing acteria, Approx. Sulfate Reducing acteria Population (CFU/ml) | | | | | | | | | 0.00023 0.00029 ND | 0.0022 | 0,00023 0,0038 ND | | | | | | | | | | aprolactam methylphthalate uorene aphthalare mma-BHC (Lindane) eptachlor ethoxychlor eptachlor ethoxychlor enzene hylbenzene p-Xylene ethylene chloride Xylene yerene lluene acteria, Heterotophic (MPN/ml) acteria, Iron Related acteria, Approx. Tron Related acteria, Approx. Sulfate Reducing acteria Population (CFU/ml) ADIONUCLIDES (pCi/L) | | | | | | | | | 0.00023 0.00029 ND | 0.0022 | 0,00023 0,0038 ND | | | | | | | | | | aprolactam methylphthalate uorene aphthalane mma-BRC (Lindane) eptachlor ethoxychlor enzene p-Xylene ethylene chloride Xylene stylene acteria, Heterctrophic (MPN/ml) socteria, Approx. Tron Related acteria, Approx. Tron Related acteria Applation (CFU/ml) acteria, Sulfate Reducing acteria, Sulfate Reducing acteria, Prox. Sulfate Reducing acteria, approx. Sulfate Reducing acteria, approx. Sulfate Reducing acteria Applation (CFU/ml) ADIONUCLIDES (pCi/L) ross Alpha | | | | | | | | | 0.00023 0.00029 ND | 0.0022 | 0,00023 0,0038 ND | | | -33 | | | 15 | | | | aprolactam methylphthalate uorene aphthalene imma-BRC (Lindane) eptachlor ethoxychlor enzene hylbenzene p-Xylene ethylene chloride Xylene luene luene luene Luene, Reterotrophic (MPN/ml) schena, Iona Related schena, Iona Related schena, Approx. Iron Related schena, Approx. Sulfate Reducing scheria, Approx. Sulfate Reducing scheria, Approx. Sulfate Reducing scheria, Approx. Sulfate Reducing scheria, Applation (CFU/ml) ADIONUCLIDES (pCi/L) ross Alpha forrison-Malerie; 1984; "Water Sup | | | | | | | | | 0.00023 0.00029 ND | | 0,00023 0,00038 ND | | | | | | 15 | | | | prolactam methylphihalate Jorene phthalane Jorene phthalane Jorene phthalane Jorene phthalane phthalane phthalane phthalane Jorene phthalane phthylene phthylene thylene thylene ktylene ktyle | | | | | | | | Area Grou | 0.00023 0.00029 ND | | 0,00023 0,00038 ND | jation - Ana | lyšcal Resi | | | | 15 | | | | profactam profactam profactam profactam pothalate orene phthalate orene phthalate orene phthalate placklor placklor placklor nozene pytylene potypiene potyp | rater Investiga
ming State E | ation Site Ins
ngineer's Of | spection - Ana
fice) | lytical Resu | | | | Area Grou | 0.00023 0.00029 ND | | 0,00023 0,00038 ND | jation - Ana | lyšcal Resi | | | | 15 | | | | prolactam nethylphthalate ortenethylphthalate ortenethylphthalate phthalane | rater Investiga
ming State E | ation Site Ins
ngineer's Of | spection - Ana
fice) | lytical Resu | | | | Area Grou | 0.00023 0.00029 ND | | 0,00023 0,00038 ND | jation - Ana | lytical Resi | | | | 15 | | |